
25/09/2023

The Lego State
A guide to thinking in components
(Version 1.0)

Gordon Guthrie
RESEARCH FELLOW AT SCOTTISH GOVERNMENT
BIUS WORKING PAPER NO 3
(THIS DOCUMENT DOES NOT REFLECT THE VIEWS OF SCOTTISH GOVERNMENT)

1

Table of Contents

1 Introduction .. 2

1.1 What is a Lego state? .. 2

1.2 Who are you? .. 2

1.3 Why should you read this? ... 2

2 The BIus Project .. 3

3 Context .. 4

3.1 How to think about componentisation? ... 4

3.2 Legoisation described ... 4

3.2.1 Legislation ... 4

3.2.2 Services ... 5

3.2.3 Software .. 5

3.2.4 Data ... 5

3.2.5 Service Composition.. 5

3.2.6 Organisation .. 6

3.3 A Lego state has capability .. 6

3.4 Promotion of components .. 7

3.5 Remixability ... 9

3.6 Tradeoffs ... 9

3.7 Most of this simply isn’t new .. 11

3.8 Order of consideration .. 11

4 Componentisable Layers ... 13

4.1 Introduction .. 13

4.2 Services ... 13

4.3 Legislative Functional Software .. 15

4.4 Shared Functional Software .. 16

4.5 Data ... 17

4.6 Organisation .. 19

4.7 Legislation ... 20

4.7.1 Legislative tidy-up ... 23

4.7.2 Standardisation of terms .. 24

4.7.3 Drafting checklists ... 25

4.7.4 Fully formed services .. 25

4.7.5 Built-to-be-deployed legislative solutions .. 26

4.7.6 Delivery frameworks ... 27

5 Summary ... 28

2

1 Introduction

1.1 What is a Lego state?

A lego state is one where the administrative, regulatory and financial state is no longer a
large group of unique, hand built (and perhaps hard to navigate) systems.

It’s one where the digital state is built from common, and shared, components. Some are
stand-alone services: identity, payments. But some are occluded from the citizen: shared
organisations, shared digital systems, shared databases, shared legislative solutions.

It’s a state where the thinking that has made Lego and IKEA and car manufacturing and high
street coffee chains such successes are applied to government. The twin paradoxes of
standardisation:

• choice by assembly, where standard components are assembled into tailored
solutions

• flexibility from rigid composition

1.2 Who are you?

You are a policy person, a service designer, a data architect, a delivery manager, a member of
a project team, an operational manager, an elected representative. You are in government or
opposition. You work at a thinktank, or in parliament, or government, as a civil servant or
political advisor. You care about how we build an efficient and effective state in the digital
age – one that has the best outcomes, is easiest and unobtrusive to use and has the lowest
costs possible.

1.3 Why should you read this?

There is a thinktank-to-government-services assembly line that takes ideas, turns them into
policies, and legislation and onto departments and systems and service delivery. You should
read this to help you think about this as an improvable process, one that you can shape to
get the better outcomes you want, to help you speak to your colleagues in a shared language
that will let you change processes and make the trade-offs in an informed manner.

3

2 The BIus Project

This is Working Paper No 3 of BIus - Basic Law-Making For Legislative Computer Systems
which is a research project looking systemically at how the state creates the digital systems
underpinning its services.

Working papers are being released gradually for comment:
Working Paper 0 – The locus of change (forthcoming)
Working Paper 1 – Data and the rule of law (published)
Working Paper 2 – Rules as code (published)
Working Paper 3 – The Lego state (this document)
Working Paper 4 – The remixable state (published)
Working Paper 5 – Law reform for data (forthcoming)
Working Paper 6 – A solera for data cleansing (forthcoming)
Working Paper 7 – Experimental digital legislative processes (forthcoming)

BIus working papers are designed to stimulate discussion about key elements of the
relationship of the state to digital systems and their delivery. Your feedback, input, and
particularly criticisms of this paper are most welcome. Feel free to distribute it however you
wish.

Working papers are published via the Digital Policy SubStack.

Author/contact: gordon.guthrie@gov.scot or subscribe to Digital Policy | Gordon Guthrie |
Substack1

The author is an independent Research Fellow at Scottish Government under the First
Minister’s Digital Fellowship programme. The views of this paper do not represent the views
of Scottish Government.

1 https://digitalpolicy.substack.com/

mailto:gordon.guthrie@gov.scot
https://digitalpolicy.substack.com/
https://digitalpolicy.substack.com/
https://digitalpolicy.substack.com/

4

3 Context

3.1 How to think about componentisation?

Developing complex propositions should usually follow the think big/build small model. This
document unabashedly thinks big. Consequently it is appropriately shallow. It is about
sketching end-state patterns in broad outline.

When developing your lego strategy you should do the opposite – build small – and identify
the smallest programme of work that will implement components. Legoisation is about
capability more than it is about outcomes – if the capability is grown the outcomes will
follow.

3.2 Legoisation described

Legoisation is the process of moving from hand-building state systems to assembling them
from components. It can happen in many places.

3.2.1 Legislation

The law matters. Ultimately the computer systems have to do what the law says. Consider
licensing schemes. Governments issue lots and lots of licenses to do things. The more custom

5

the laws for various licensing schemes are, the wider the range of behaviours of a single
deployed licensing software system would have to implement. So legoising legislation should
shrink the amount of work. It should also reduce the costs of developing legislation and
policy.

3.2.2 Services

The citizen experiences the state as services – provided by people or digital systems or a
mixture of both. Things like tax and social security are experienced as web pages or call
centres, as data to be provided and hoops to be jumped through, as success of failure and
appeal against the decision, finding, navigating and logging in, getting paid.

3.2.3 Software

Services are the implementation of the services in code – either built as a single system or
composed from multiple services.

3.2.4 Data

Code and services typically change and mutate, but underneath them is data which is the
persistence of customer information in a database or file system. Data comes surrounded
and hedged with procedures: who can do what to it when and under what circumstances.

3.2.5 Service Composition

Typically a software deployment will consist of a service, or services, implemented in
software and with its own data persistence/database layer. These three elements tend to be
fairly tightly coupled which is why they are shown linked in the diagram.

The service is usually a composition of many different tech and data components – what you
might call technical services. This composition (and encapsulation) is a key feature, lots of
small components become one larger one at a higher degree of abstraction.

For example the home page of my Twitter account on the web calls 184 different end points
to retrieve the data and layout to display my Twitter.

6

3.2.6 Organisation

The final wrapper is organisation. Software service don’t run themselves but are wrapped in
people. And organisations can be layered. One organisation can develop, deploy and manage
software that is used by another organisation. Development, deployment and management
can themselves be split out by organisation.

Organisation is different to the other domains here – because ultimately human beings are
the determining factor – all the other components and the contracts that we use to make
them interoperate are creatures of the imagination, things human beings tell other human
beings to help them organise their work co-operatively.

3.3 A Lego state has capability

A Lego state is a state that has the capability to create digital, legislative and organisational
components and compose those components in more effective ways.

Legoisation is not something that can be bought, or applied, or completed. Becoming a Lego
state involves a host of changes. Mindset, process, organisation, training and incentivisation,
career and financial flows to name a few.

Modern states and civil service organisations are already a long way on the journey – albeit
mostly as endo-legoisation. Different professions are producing pattern books within their
own domain.

Endo-lego is made by professionals within their zone of control – data experts making
standard data components, UX experts making HTML controls with JS and CSS libraries to
support them and so on.

Here is a pattern book for common web components from the Government Digital Service.uk
gov. The Scottish Government’s Parliamentary Counsels have a pattern book Common
Legislative Solutions. Two wildly different professions, web developers and legislative
drafters.

And sometimes these patterns are crossing domain boundaries – the web components
design pattern book has been implemented in code at GOV.UK Frontend. This is the first step
in exo-legoisation – where patterns in my discipline start being promoted as canned solutions
with catalogues in your discipline and we started seeing alignment across organisational
boundaries.

https://gds.blog.gov.uk/2018/06/22/introducing-the-gov-uk-design-system/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1099024/2022-08_Guide_to_Making_Legislation_-_master_version__4_.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1099024/2022-08_Guide_to_Making_Legislation_-_master_version__4_.pdf
https://frontend.design-system.service.gov.uk/

7

Exo-lego is related to endo-lego by a translation and a promotion. An example would be
written standards (this is how we build APIs) becomes a framework for making APIs. An
instance of that API is exposed in a catalogue for Service Designers to use – and the API is
consumed as a Technical Service Component. It is a promotion because the Service layer is at
a higher level of abstraction than the software layer.

That process of how you take identified patterns in one world and translate and align them in
another to simplify delivery is what this document is all about.

And the fact that it is an exo-process and not an endo-one should tell you a lot about how to
think about it. If you are only talking to your team, your peers, your profession, then you are
only talking inward facing - endo. Sorting out your professions view is an important part of
the game – you can’t align with anyone else if you don’t, but it is simply the beginning,
getting to the start line, the base camp. The finish, the summit still awaits you. When you are
componentising your team, like your output must be endo, outward facing, including people
NOT from your zone of control, NOT from your zone of comfort, NOT from your zone of
expertise.

3.4 Promotion of components

One of the core concepts in component thinking is promotion – and the key thing is that
there are lots of routes to promote. The endo/exo example took a well understood one
software patterns to API-as-a-service but there are plenty more.

A standardised component is promoted from a pattern, a way of doing things, to a thing to
be used, to be selected from a catalogue of things.

This is best explained with an example. Data on property was standardized2, with the creation
of UPRNs (unique property record numbers) and USRNs (unique street record numbers). This
was a written standard – you should use their attributes in your data schemas.

2 Identifying property and street information - GOV.UK (www.gov.uk)

https://www.gov.uk/government/publications/open-standards-for-government/identifying-property-and-street-information
https://www.gov.uk/government/publications/open-standards-for-government/identifying-property-and-street-information

8

This didn’t standardise postal addresses though – my flat can be described equally well as:

• 16-5 Hart Street

• 16/5 Hart Street

• Flat 5, 16 Hart Street

• Top Left, 16 Hart Street

• TL, 16 Hart Street

• 16-5 Hart St

• 16/5 Hart St

• Flat 5, 16 Hart St

• Top Left, 16 Hart St

• TL, 16 Hart St

The standard (UPRNs and USRNs) was promoted to a web service AddressBase3. Before it was
a description of how to do something (but you had to build the thing), now it is a web API
(which you can just consume).

Generally legoisation is about promotion – up the stack – and there are lots of routes:

In this case data has been promoted to a web service – the left hand, smallest and lowest
orange arrow on the diagram.

All promotions, irrespective of their ‘from’ and ‘to’ have the same characteristics:

• take something that is standardised in one domain and translate and transpose it into
a more abstract but different domain

• make it technically available in some fashion

• publish it in some sort of catalogue so that a range of different organisations can find
and use it

Critically publication must be a co-operative act with the consumers and not something
imposed on them. Components are only components when they are used – otherwise they
are just white elephants

3 Access free address data using AddressBase - GOV.UK (www.gov.uk)

https://www.ordnancesurvey.co.uk/products/addressbase#technical
https://www.gov.uk/guidance/access-free-address-data-using-addressbase

9

3.5 Remixability

Remixability is a property of a Lego state – the ability to reorganise institutions and refocus
attention from one area of society to another. It is part of the world of componentisation
because it involves reassembling components into different organisational structures, but,
but…

There is a paradox of decentralisation – in order to decentralise digitally there are core
components that you need to centralise first.

Remixability falls squarely into this world – and for that reason it is the subject of a different
working paper Working Paper 4 – the remixable state (you can find it on SubStack at
DigtialPolicy4).

3.6 Tradeoffs

There are a range of trade-offs that need to be made.

Legoisation is a lossy process, you lose the ability to hand craft details. The degree of loss
depends on the brick size. Imagine a statue of Michelangelo’s David made in lego. Would it
be good enough? Imagine it in duplo (the big lego for toddlers). Imagine it in breeze blocks.

So there is a brick-size dial that you can twiddle to trade off.

Marble Lego Duplo Breeze blocks5

This loss of resolution is the consequence of the rigidity that enables the flexibility. During the
design of your components you must focus on the rigid constraints, they should be as small
and as few as possible, but no lesser and no smaller. If they stop being rigid they stop being
able to define composable components.

4 https://digitalpolicy.substack.com/
55 Modern art is rubbish, innit? Just a lot of old breeze blocks and yeah that’s me being polite, you can’t even see if he’s in the nip

https://digitalpolicy.substack.com/p/chatgpt-shit-get-getgpt-banged
https://digitalpolicy.substack.com/

10

The trade-offs will be described in terms of ladders as much as possible. Options on the lower
rungs are suitable when there is low levels of functional alignment and the more alignment
the higher up the ladder you can go.

Exactly how much do you want to componentise, and how much must be custom and how do
you match the two? At the highest level each organisational unit might only need to be able
to skin services into its branding with its logo and colours, but there will be other reasons for
customisation that might require more structural divergence.

A good way to understand componentisation is to look at the Volkswagen family of cars.
Audis, VWs and Škodas share about 75% of the same components, engines, chassis, gear
trains, electrics and so on. But the variation allows the creation of product lines for premium,
family and cost-conscious customers. (The book The Machine That Changed The World 6 is
the classic read about this and the birth of lean production).

Once upon a time there was a separate car factory per brand – one for Audis, one for each
VW marque, one for Škodas. By componentisation wider ranges of cars could first be built on
the same line, then lines could be merged until one factory can churn out lots of different
types of car. Gradually the cost base was shrunk and squeezed. And this restriction is
experienced by the customer as an explosion of choice, making things swap-out in the macro
makes them swap-out in the micro: seat fabrics, in-car music systems, colour, lights,
windows, engines, wheels, all now offered in a range unavailable 20 or 30 years ago. “Any
colour they like as long as it’s black” it surely ain’t no more.

As we go through the layers the same rough’n’ready reckoning will be used based on a VW
percentage. The lower the VW percentage (low % of shared components) the lower down
the ladder you will componentise (and the more operational systems you will end up with).
The higher the number, the higher the componentisation and the less systems you end up
with.

At a software level there is a centralised/decentralised trade-off. A software system for each
of the many thousands of license types that Scottish Government issues is definitely
excessive. But one software system for them all is probably not enough.

Centralising might reduce deployment cost at the expense of slowing down systems
maintenance and increasing operational costs. Very similar systems can be economically
supported by a common system, but too much variation, even if it is implemented in
pluggable blocks, doesn’t necessarily make for the best result. A single Scottish government
system would impose massive cross-departmental communication overhead.

Legoisation is about making choices and trade-offs. There is no one correct answer – and the
best answer is determined not by where you want to go on its own, but also where you are
starting from – the current landscapes: legal, organisational and technical.

6 https://www.amazon.co.uk/Machine-That-Changed-

World/dp/1847370551/ref=sr_1_1?crid=2DJ9X7YQUH79&keywords=machines+that+changed+the+world&qid=1696506260&sprefix=machi
ne+that+changed+the+world%2Caps%2C72&sr=8-1

https://www.amazon.co.uk/Machine-That-Changed-World/dp/1847370551/ref=sr_1_1?crid=2DJ9X7YQUH79&keywords=machines+that+changed+the+world&qid=1696506260&sprefix=machine+that+changed+the+world%2Caps%2C72&sr=8-1
https://www.amazon.co.uk/Machine-That-Changed-World/dp/1847370551/ref=sr_1_1?crid=2DJ9X7YQUH79&keywords=machines+that+changed+the+world&qid=1696506260&sprefix=machine+that+changed+the+world%2Caps%2C72&sr=8-1
https://www.amazon.co.uk/Machine-That-Changed-World/dp/1847370551/ref=sr_1_1?crid=2DJ9X7YQUH79&keywords=machines+that+changed+the+world&qid=1696506260&sprefix=machine+that+changed+the+world%2Caps%2C72&sr=8-1
https://www.amazon.co.uk/Machine-That-Changed-World/dp/1847370551/ref=sr_1_1?crid=2DJ9X7YQUH79&keywords=machines+that+changed+the+world&qid=1696506260&sprefix=machine+that+changed+the+world%2Caps%2C72&sr=8-1

11

There is another aspect that needs to be considered – organisational maturity – how many
rungs are we capable of going up at a time. Legoisation is a learned skill and we are finding
our feet at the bottom at the moment.

3.7 Most of this simply isn’t new

All of the components and componentisation choices discussed in this paper are well known,
well understood and have considerable literatures. This is about extending techniques that
are tried and tested – and which in many cases are already implemented in the public sector.
You probably know more about how to do this than you think.

3.8 Order of consideration

Government computer systems and their development fundamentally differs from private
sector ones because the private sector has to seduce people to become users whilst the
public sector can compel.

In thinking about legoisation we should start not at the top (with legislation) but in the
middle (with services) and the citizen and their experience. The law should be shaped to
make systems easy for citizens to use, and the technical and data architectures fitted to that
world.

After services it’s time to look at the software architecture and then the data architecture.
The organisational architecture is how these are composed into services that can manage
themselves operationally: costs, staffing, operational reporting and all the rest.

It is critical to remember that the organisational level is different to all the rest – the models
and components and all the rest only exist in the minds of people. Fundamentally, unlike lego
which has physical components, all of these components are “contracts” that need to be
lived by human beings. Fundamentally at scale all software problems are human problems7.

7 hat tip to my old gaffer Mahesh Paolini-Subramanya for that zinger

12

Legislation is the final part – once there is an appropriate organisation and service model that
meets our cost and flexibility requirements it becomes possible to make of the parliament a
machine for stamping out bricks that we can build with.

13

4 Componentisable Layers

4.1 Introduction

This section will step through the various layers that we can componentise and sketch out
the options in each. Critically we can understand where promotion of components (say from
a service to an Act of Parliament or a Ministerial Order) can pre-bake systems and reduce
costs and implementation times.

4.2 Services

The Scottish Environmental Protection Agency issues thousands of licenses, in a variety of
flavours to a wide range of organisations across Scotland. They have been through a couple
of rounds of legoisation – building software systems and approaches that can consolidate the
business processes of different licensing services whilst supporting the full range of required
licenses.

In this slide from SEPA the licensing team have componentised their systems based on verbs
extracted from service design – cataloguing what the user has to do to successfully apply for
a license to perform some action. The software development process was then to build
reusable systems that could support multiple licenses of which they have several thousands.

Their specific licences are themselves legoised – a custom license for a particular installation
might be assembled from a selection of sub-components – think of a ‘coffee’ from a chain
coffee store – double decaff frappe hazelnut latte with oatmilk and 2 sugars is both ‘custom’
and ‘standardised’ – back of the envelope calculation Costa has north of 1,600 variations of
coffee alone – choice through assembly of components – the paradox of standardisation.

14

Common business processes are necessary but not sufficient for effective componentisation.
They represent the functional specification of the system, but there might be non-functional
requirements that prevent different things sharing the same platform.

When looking at ‘Verbs’ it is worth assessing the VW percentage of each verb. The verb Pay
has a VW percentage of nearly 100% across all government systems that make payments
(Social Security has a duty of care to release lump sum payments to vulnerable clients in a
trickle, but apart from that bog standard).

Functional specifications are things like paying benefits in Social Security, or calculating tax in
the Revenue – things that are specific to a particular system, that make it what it is.

Non-functional specifications are things like: must work in a browser, must have data saved
to disk, must use 2-factor authentication. Things that are not specific to what the software
does – more about how it does it.

Typical non-functional barriers to legoisation relate to rules around data in the widest sense.
To access any police system you need to be a vetted police officer or police civilian worker,
and for the police to access any non-police system they usually need a warrant from a sheriff.
For good reasons you won’t be seeing common platforms between police and non-police
functions anytime soon.

A verb with a super-high percentage is a good candidate to be pulled out into a standalone
service (as Pay already is).

There are a couple of things to look out for:

• does the presence of a handful of 99% verbs pull up the overall VW%?

• could one set of verbs with a low VW% be turned into 2 or 3 each with a much higher
one?

Imagine a proposed set of (partially randomly generated) component verbs:

Verb Find Identify Overlook Realise Generate Benefit Interfere Pay

VW% 99% 99% 20% 31% 19% 23% 32% 100%

Overall it looks componentisable – but Find is a CRM, Identify is the digital ID service, Pay is
the payments rails – pull these out as stand alone systems and you don’t have much left.

Take them out and then split the candidate systems into 2 sets and you might get:

Verb Overlook Realise Generate Benefit Interfere

Set 1 VW% 62% 71% 78% N/A N/A
Set 2 VW% N/A N/A 54% 65% 72%

This sort of juggling of business process is the way you design your ideal future state.
Identifying where you would like to be. The next challenge is to figure out if you can, should
or would get there. It is technically possible? is it legal? is it easy? do the necessary people

15

have the capability to do it? is it cost-effective to do it? what else would doing it unlock? of all
the things you could do now, is this the priority?

4.3 Legislative Functional Software

There are a range of models for legoising legislative functional software – that is to say
software that implements a particular specialist requirement. The actual provision of an
actual service (say social security) requires many different software solutions: the main social
security system, a call centre system, HR, payroll, desktop support. This table applies to the
social security system only – other shared components have their own consolidation ladder.

Rung Description When To Use

3 Software as a service A configurable online platform that a
particular government department can
use to set up a service that conforms
to a certain type

When there is legislation designed
to be implementable on the
government SaaS platform

2 Hosted Software One unit of government runs a
software platform and when another
one wants to implement a service on it
they contract with the hosting unit to
build out an implementation of their
service

When software components or
add-ons need to be developed to
support a particular new
requirement

2 Open Source/Shared
Software

One unit of government builds a
system and publishes the software for
other units of the government to use

2 flavours:

• keep in synch – where each user
contributes changes to the central
version and the software
organically grows to handle more
types of government service

• fork – where you start with a copy
of the software and customise it
into your own system

When you need to run your own
instances (you have sensitive data
and you can’t let other state
employees see it)

It is possible to move Open
Source/Shared software to
Software As A Service if there is
sensitive data but it requires secure
data multi-tenanting and a hosting
organisation that has the highest
levels of authorisation.

1 Source of inspiration One team has done a good job and the
other team comes and studies their
design processes, implementation and
service model

When the two business processes
are not closely enough related to
make a common system
worthwhile – perhaps one system
is legoised already for all the Xs and
the other group want to build a
lego systems for all the Ys

Notice that Hosted and Open Source/Shared are at the same rung – functionally they are
roughly equivalent – but there are non-functional reasons (data access, other operational
requirements) that keep them separate.

The higher the VW% the higher up the rungs you can go.

16

We can also manage components in the business process Verb model by converting the
Verbs to Participles.

Just say our analysis of the Licensing Verbs that SEPA identified ended up looking like this:

Verb Know Find Apply Verify Access Status Notify Award Report Review

VW% 70% 69% 72% 12% 68% 68% 71% 70% 69% 64%

So everything looks fine except Verify is madly low – Firearms require the police to verify in
an interview, Fireworks needs a police record check, radioactive substances needs proof of
professional qualifications, and on and on.

We can transform Verify to Verified with a fan-out architecture. The common components
now look like:

Verb Know Find Apply Verified Access Status Notify Award Report Review

VW% 70% 69% 72% 100% 68% 68% 71% 70% 69% 64%

The core system no longer cares how you verify for a given license – it just kicks out to a
system that implements the Verb for each license and the lego system just holds the result
Verified/Not Verified.

To use the car analogy, you might merge your production line so that you can build Audis
VWs and Škodas before you are able to merge your engine lines, so maybe you have 3 of
them each producing a low-power, a medium one and a high-performance, or a petrol line
making a range of engines, and a diesel one likewise, or some other appropriate split out.

So you can twiddle the Verb-Participle knob to fix up things – but if you whack it up to 100%
and make all verbs into participles you smash the whole of Government into thousands of
fragments, each running their own tiny webservers to do minute slivers of work in an
unmanageable horde.

It should also be noted that basic infrastructure is now commonly rented from major
suppliers – software is run in the cloud. This is a form of componentisation (endo-legoisation
within the tech world) that is now well understood and widely adopted. The key take-away
about <the cloud> tho is that it is not some magic that you can rub on your software and it
makes all your troubles go away (marketing hype ahoy!). Migrating to the cloud is an
important first step, and an opportunity to test your organisation’s maturity in component
thinking but it is not the end by any means.

4.4 Shared Functional Software

17

Shared functional software is things like call centre software, desktops and fileservers,
accounting, HR and payroll. There are a couple of reasons why we need to think about it.

Firstly our own government specific software needs to be delivered in a full operational
context, staff you work on laptops and log in and take calls and send emails and get paid.

Secondly, the legoisation processes that we want to bring to government are already well
advanced in normal commercial software – looking at shared functional software is a good
way to get a sense of what our own delivery offerings can and should do. It is a good way to
get shared understanding of what our as-yet-undelivered systems need to do by pointing at
and learning from work that other sectors have already done.

In particular we can see that already software is moving into multiple layers of
componentisation – from cloud provisioning, to fully service platforms-as-a-service to
software-as-a-service. Things like multi-tenanting (where many customers share the same
infrastructure) will all have their own futures across state systems (if they aren’t already
being implemented).

There already exist government guides to buying and implementing shared software
components so I won’t recapitulate them here. The ladder looks very much like the legislative
functional one (although there is a plethora of marketing terms and fads).

4.5 Data

Data seems the easiest layer to deal with. The first problem is that it can seem trivial. It isn’t.
Keeping the same data held in multiple places in sync is very difficult and highly technical.

From a cost/simplicity perspective tho it is simple. Either you have the data in one place, or
you have it in two or more. If you have two identical data sets with their own procedures and
process and you replace them with one then you have eliminated work, and confusion and
cost and all the things that we are trying to get rid of. Job done.

But merging datasets is easier to talk about than do.

18

To successfully merge datasets you need to align a number of operational factors.

Action Description

Defining Where data is defined, could be legislation, regulation or ad-hoc

Auditing This is general looking at the data for data quality, conformance with human
rights, and data protection, checking that data is not available to the wrong
people, weeding and deletion activities

Appealing The process and procedures whereby a person or organisation or thing gets
onto or gets taken off the database

Partitioning Where the data entity is partitioned, across local authorities, across health
boards, internally within SG and its agencies

Creating The point of creation - and who, how and why the data must be created

Reading Access rights to use and see data

Updating The processes for updating data - specifically updating by overwriting - so not
ledgered/immutable data structures (ideally we want to use ledgers as much
as possible and not update).

Deleting The processes around the deletion of a data item (this is generally partial
deletes of items and not total delete/weeding of a set of collated data which
is covered by Auditing) (ideally we want to use ledgers as much as possible
and not update).

Refreshing Is the data once and done, or is it supposed to be up-to-date?

As a rule of thumb, for 2 data sets to be merged into one, all of these need to be either
harmonised or managed. The problem comes from the fact that they are not uniformly
specified. Some laws have a set of some of these in the primary legislation (Acts of
Parliament) with the rest handed over to the operational implementors to decide. Some pass
some or all of them over to secondary legislation (Ministerial Orders). Some legislation
(primary or secondary) is handwaving, some is precise.

To make it worse, poorly described rules of managing or accessing data may have been
sharpened up in case law where courts, faced with uncertainty or imprecision in the law,
have adjudicated and set precedent.

The cost of working out if two data sets are or can be aligned can be expensive and
uncertainty itself is a major barrier to joined-up government. Faced with time, cost,
immediate impact and promotion or political pressures the default option ‘go it alone’ often
seems to make the most short term sense, despite the long term impacts and degradation of
services that brings.

Data also needs to be aligned with the Rule of Law at a design level8.

8 There is a BIus Working Paper that looks at this. Working Paper 1 – Data and the rule of law – and another
Working Paper 5 – Law reform for data will go into the legislative side of it in more detail.

19

4.6 Organisation

Organisational models have a similar ladder structure to technical consolidation models.

Rung Description When To Use

3 Umbrella Services A single organisation provides a host of
multiple services using common
infrastructure like call centres, website,
help desks. It controls software
development and how the IT presents
to employees and the world

When there is a mass of closely
related services and transfers
between one service and another is
common (think health services)

2 Platform Services The ‘owners’ of the service supply non-
technical staff (citizen facing, call
centre staff) and purchase or use
platform services (managed software)
from another government organisation
or private provider

Where the services being
supported are structurally similar
but culturally and operationally
very different (think firearms
licensing and dog licensing).

1 Infrastructure
Services

One government department or
supplier provides raw machines and
database servers in an environment
that has some basic management
(backup, restore, failover, electrical
and physical redundancy) and the IT
department of the purchasing
department install and run software on
it

Where there is a need for very
specific and custom software
environments

Organisational design here is being discussed at a surface level – how it is experienced at the
boundaries. As a discipline it focusses heavily on internal structures within an organisational
unit. How you build and resource your teams will shape what you deliver. You should design
organisational components that encapsulate data, software and service components such
that they contain all the necessary powers to do their job. Poorly placed organisational
boundaries can and will kill effectiveness and performance.

20

4.7 Legislation

Finally, we are at legislation. Before we can discuss legoisation at this level it is important to
understand the legislation assembly line. Obviously, this will vary by jurisdiction, but most
(Anglo-Saxon) jurisdictions have processes that are closely related to the Scottish system.

Lets walk through this process step by step:

 Description

1 The process of creating primary legislation (acts of parliament) is outlined in the LPU
Bill Handbook9. (The Westminster equivalent is the Guide To Making Legislation10).
Neither of these documents mentions technology, data, services or systems – nor
prompts people working on legislation to consider how it is to be delivered at all.
These processes are targets for promotion of checklist questions: “have you
considered? here is a way of doing this…”

2 The bill process develops policy which is then passed to the Parliamentary Counsels
to turn into a Bill – draft legislation for consideration by the Parliament – that process
is supported by a pattern book Common Legislative Solutions11. It has patterns for
licensing, creating bodies and a variety of other common drafting problems. It is
endo-lego. Again this is a target for promotion of checklists: “write this into the
legislation”.

9 https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-

202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-
%2BInformation%2Breleased.pdf
10 https://www.gov.uk/government/publications/guide-to-making-legislation
11 https://www.gov.scot/publications/guidance-instructing-counsel-common-legislative-solutions/

https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-%2BInformation%2Breleased.pdf
https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-%2BInformation%2Breleased.pdf
https://www.gov.uk/government/publications/guide-to-making-legislation
https://www.gov.scot/publications/guidance-instructing-counsel-common-legislative-solutions/
https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-%2BInformation%2Breleased.pdf
https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-%2BInformation%2Breleased.pdf
https://www.gov.scot/binaries/content/documents/govscot/publications/foi-eir-release/2022/07/foi-202200306018/documents/foi-202200306018---information-released/foi-202200306018---information-released/govscot:document/FOI%2B202200306018%2B-%2BInformation%2Breleased.pdf
https://www.gov.uk/government/publications/guide-to-making-legislation
https://www.gov.scot/publications/guidance-instructing-counsel-common-legislative-solutions/

21

 Description

3 The law itself is not the only target for promoting into. Every Bill which is introduced
into parliament is done so as part of a Bill Pack of which the Bill is just a part. At this
point we slide out of the world of government and the civil service and across the
constitutional boundary into the world of the parliament. The ‘proper form’12 of a Bill
is determined by the Parliament. The Bill Pack contains a variety of elements –
impact assessments, financial statements, explanatory notes as well as the proposed
law itself.
Not all elements of it have the same status. Basically when resolving a point of law, a
judge may take into account the Explanatory Notes and the text of the parliamentary
debate in forming an opinion on the correct interpretation. Other components of the
Bill Pack are not in themselves justiciable.

4 The Interpretation And Legislative Reform (Scotland) Act 201013 is the primary
pattern book in law. It is a repository of common definitions which other acts then
refer. It is in effect a published catalogue of legal lego blocks – and is a promising
target for promotion into.

5 Not all law goes through the Bill/Act (Primary Legislation) route. There are only some
22 Bills per year at Holyrood – as compared to about 400 Ministerial Orders
(Secondary Legislation or Scottish Statutory Instruments). The SSI Guidance Notes14 is
pattern book for them, and a promotion target in its own right.

6 The final place for a catalogue is plain old regulations (sometimes called Tertiary
Legislation) where a person or organisation has statutory powers to make a
determination on standards and people are legally obliged to follow those
determinations.
This could be a statutory body (created by an Act of Parliament and under the
oversight of the Parliament and not the government) or could be a statutory person
(something like a Chief Medical Officer but for tech who could say “you must use
this, you must do it this way…”).
(I have written more extensively on statutory persons and their role in killing duff
systems over on SubStack15).

12 In the Scottish Parliament’s case by Standing Order 9.2
https://www.parliament.scot/about/how-parliament-works/parliament-rules-and-guidance/standing-orders/chapter-9-public-bill-
procedures#topOfNav
13 https://www.legislation.gov.uk/asp/2010/10/contents
14 I have a personal copy of the SSI Guidance Notes – I don’t have access to the Scottish Governments Electronic
Document Record Management systems. As far as I have been able to determine it has not be made publicly
available by the Scottish Government – I suspect not because it is confidential, but because nobody outside
government is interested in it
15 https://digitalpolicy.substack.com/p/stop-the-line

https://www.parliament.scot/about/how-parliament-works/parliament-rules-and-guidance/standing-orders/chapter-9-public-bill-procedures#topOfNav
https://www.legislation.gov.uk/asp/2010/10/contents
https://digitalpolicy.substack.com/p/stop-the-line
https://www.parliament.scot/about/how-parliament-works/parliament-rules-and-guidance/standing-orders/chapter-9-public-bill-procedures#topOfNav
https://www.parliament.scot/about/how-parliament-works/parliament-rules-and-guidance/standing-orders/chapter-9-public-bill-procedures#topOfNav
https://www.legislation.gov.uk/asp/2010/10/contents
https://digitalpolicy.substack.com/p/stop-the-line

22

 __ __ _

 \ \ / / (_)

 \ \ /\ / /_ _ _ __ _ __ _ _ __ __ _

 \ \/ \/ / _` | '__| '_ \| | '_ \ / _` |

 \ /\ / (_| | | | | | | | | | | (_| |

 \/ \/ __,_|_| |_| |_|_|_| |_|__, |

 __/ |

 |___/

Before crashing into this, take a step back and think about the constitutional consequences.
The clear, easy and simple route is to create framework bills and push all pattern stuff into
secondary legislation and guidance. This route is wrong.

Decisions about data and data handling are very long lived – with lifetimes longer than
human beings. Careful thought needs to be put in to figure out how to do this.

This is a core topic of my research and is explored in this Scottish Government blog series16:
Part 1 – we need a gearbox (blogs.gov.scot)
Part 2 – Frankenstein Bill (blogs.gov.scot)
Part 3 – technical pattern books (blogs.gov.scot)
Part 4 – a legislative architecture (blogs.gov.scot)
Part 5 – testing the proposals (blogs.gov.scot)

The starting point is clear, the first thing to do. The LPU Bill Handbook defines a process to
follow – it can be thought off as a high-powered and well-written checklist. The first step is to
inject our new pattern thinking into it in the form of a section focussed on the digital
implementation that the policy/legislation will need to become a thing:

• have you talked to the data people?

• what existing technical systems will be impacted by this?

• who will deliver this and are they involved in the development of the policy?
and so on.

The process of injecting these patterns must include the owners and authors of the things-
into-which-we-are-injecting-them. These professionals have their own patterns and ways of
seeing the world – and the reconciliation of these two views of the same pattern cannot take
place without their enthusiastic participation.

Creating patterns is all well and good, but unless the policy and bill teams adopt them, use
them and see value in them it will be a wasted effort. The LPU Bill Handbook is therefore a
critical normative force on future legislation.

16 https://blogs.gov.scot/digital/2023/08/28/basic-law-making-for-legislative-computer-systems-part-1/

https://blogs.gov.scot/digital/2023/09/04/basic-law-making-for-legislative-computer-systems-part-2/
https://blogs.gov.scot/digital/2023/09/11/basic-law-making-for-legislative-computer-systems-part-3/
https://blogs.gov.scot/digital/2023/09/25/basic-law-making-for-legislative-computer-systems-part-4/
https://blogs.gov.scot/digital/2023/10/02/basic-law-making-for-legislative-computer-systems-part-5/

https://blogs.gov.scot/digital/2023/08/28/basic-law-making-for-legislative-computer-systems-part-1/
https://blogs.gov.scot/digital/2023/08/28/basic-law-making-for-legislative-computer-systems-part-1/
https://blogs.gov.scot/digital/2023/09/04/basic-law-making-for-legislative-computer-systems-part-2/
https://blogs.gov.scot/digital/2023/09/11/basic-law-making-for-legislative-computer-systems-part-3/
https://blogs.gov.scot/digital/2023/09/25/basic-law-making-for-legislative-computer-systems-part-4/
https://blogs.gov.scot/digital/2023/10/02/basic-law-making-for-legislative-computer-systems-part-5/
https://blogs.gov.scot/digital/2023/08/28/basic-law-making-for-legislative-computer-systems-part-1/
https://blogs.gov.scot/digital/2023/09/04/basic-law-making-for-legislative-computer-systems-part-2/
https://blogs.gov.scot/digital/2023/09/11/basic-law-making-for-legislative-computer-systems-part-3/
https://blogs.gov.scot/digital/2023/09/25/basic-law-making-for-legislative-computer-systems-part-4/
https://blogs.gov.scot/digital/2023/10/02/basic-law-making-for-legislative-computer-systems-part-5/

23

There are a wide range of ways in which patterns and catalogues could be expressed in the
legislative and policy world. The final arbitrator as to which is the best cannot be an outsider
like me, nor is it obvious that currently there is anyone who can make that call.

The only sensible approach is to do this in an experimental manner with the right
stakeholders and let the people using the patterns adjust the patterns and bed them in.

In that spirit I will romp through a range of different implementation patterns that might be
useful. Bear in mind that different elements of the legoisation might need different
implementation in different places. This list isn’t exhaustive, you should be able to come up
with variants and options:

• Legislative tidy-up

• Standardisation of terms

• Drafting checklists

• Fully formed services

• Built-to-be-deployed legislative solutions

• Delivery frameworks

The data aspects of legislation will be discussed in more detail in the forthcoming Working
Paper - Law reform for data, and the delivery framework will similarly be considered in the
forthcoming Working Paper - Experimental digital legislative processes.

4.7.1 Legislative tidy-up

If we look at the things which we need to know to define data management we see that for
different systems they might be smeared across the legislative and regulatory landscape.

24

Lets look at where the operational factors for data that were defined in Section 4.5 get
applied:

The things we need to know are smeared across multiple places (or simply not defined like
partition). This is a world in which one-way is better than the best-way. Making legislation
and regulation easier to reconcile with respect to data management will be a key win.

In a previous life I was Service Architect at Edinburgh City Council as part of the BT/CEC joint
enterprise. I did a straw poll among my database folks asking them how many instances of
people data they had in separate databases (names and addresses) and the answer was
roughly 80. I asked why didn’t we just migrate them to a common customer database. Well it
turns out that that isn’t a technical question, the problem is working out if it is legal – massive
job.

4.7.2 Standardisation of terms

Interpretation Acts are great places for standardisation:

If you get to the point where components exist and there is a shared understanding of them
across both government and parliament then promotion to a Interpretation Act is the final
boss catalogue.

25

4.7.3 Drafting checklists

A parallel to the LPU Bill Handbook is the Parliamentary Counsels’ Common Legislative
Solutions. Structural patterns could be promoted into it. This would be a catalogue entry for
Bill Teams – I will have an X like wut you have in the Common Legislative Solutions.

This is a particularly interesting example because it shows the 2 core components of exo-
lego. Firstly the standardised object – here in the Common Legislative Solutions – and then
the necessity to publish it. By the time it hits the Parliament Counsel for drafting a Bill process
with associated policy might have been running for a year or more. The pick-me-from-a-
catalogue moment will want to come as early as possible in the overall process. Again this a
communications and engagement problem.

4.7.4 Fully formed services

Fully formed systems (digital identity, payment, etc, etc) can be injected either directly or
indirectly into the Bill Pack. Lets look at direct injection first:

You will notice that here I am representing Verbs from the SEPA Service patterns of section
4.2 directly in legislation. And after using Service patterns to structure my legislation I am
further embedding APIs-as-service-components (like Pay or Digital Identity) via the
Explanatory Notes.

26

Remember that the Explanatory Notes are in the justiciable part of the Bill Pack. This might
not be desirable. In this example of indirect injection regulations are used to embed data
standards:

There are a couple of considerations about indirect injection:

• What is the status of the thing being injected?

• Who issues it? a statutory body, a statutory person or some general function?

• Does the issuer have the power to ensure it is adhered to?

• Is it volatile and likely to evolve and change? (best referred to indirectly) or static and
unchanging (maybe better direct?)

• Is it compulsory or aspirational?

4.7.5 Built-to-be-deployed legislative solutions

If the technical and service solution is sufficiently harmonised it might be possible to
template legislation and have those templates available in the Common Legislative Solutions
pattern book of the Parliamentary Counsel.

This model would work for very well defined and repeated problems (like licensing) where a
target software system and associated service and organisation model exists and the
government is seeking to get the authority to stamp out another one of them – licensing
springs to mind:

27

4.7.6 Delivery frameworks

Passing an act of parliament is a point-in-time event – delivering a policy rarely is point-in-
time. Something like the new Scottish Social Security system has been in ongoing delivery for
over half a decade. Often secondary powers are used to time-smear legal powers over the
delivery timetable. The diagram below shows different sorts of legal instruments being used
to move delivery of a major programme – with time running left to right. A bill and a follow
up. Ministerial powers being used to publish secondary legislation as appropriate and
normal/business-as-usual regulations.

The constitutional form of Statutory Instruments (often called Ministerial Orders or
secondary legislation) is that there is a full debate at the point of granting the powers – and
that the powers be as a constrained as much as possible.

If the broad structure of a delivery programme is understood it might be possible to push
patterns into the secondary legislation (as a way for constraining the Ministerial powers and
making them more amenable to oversight.

In this model we would make of the secondary legislation a catalogue (of organisational
structure, of systems use, of data rules, etc, etc).

This is obviously just the simplest sketch of how that might work.

28

Summary

This is a complex subject. And it is a subject that no one person can be expected to be an
expert in every part of. But I hope that I have shown that within each profession there has
been an ongoing process of standardisation and componentisation – and that between
professions there have been the systematic promotion of package components from the
lower to the higher.

The challenge is to put all these discrete things together – and that starts with a shared
vision. This working paper aims to give the interest parties a shared language for discussing it.

It also hammers home the point that moving in the direction of a lego state is primarily a
communications problem and a people problem. Lots of moving parts – lots of professional
and organisational boundaries to cross, lots of potential friction.

It is also important to remember that this way of thinking about components is only one side
of the story – the civil servants/government/implementors side of it. There is another story
which I have made no attempt to tell here – the constitutional side, the story of how
parliament oversees, audits and keeps an eye on the lego state. Sufficient to the day is the
evil thereof. That needs to be left to future Working Papers and publications.

There are simple and obvious first steps – getting new checkpoints into existing process
definitions – making the process an explicit one and not implicit. There can be no continuous
improvement without explicitly.

Remember, the outcomes will come from growing the capability, there is no short cut to
results.

Good luck!

